Computational Tools and Algorithms for Designing Customized Synthetic Genes
نویسندگان
چکیده
Advances in DNA synthesis have enabled the construction of artificial genes, gene circuits, and genomes of bacterial scale. Freedom in de novo design of synthetic constructs provides significant power in studying the impact of mutations in sequence features, and verifying hypotheses on the functional information that is encoded in nucleic and amino acids. To aid this goal, a large number of software tools of variable sophistication have been implemented, enabling the design of synthetic genes for sequence optimization based on rationally defined properties. The first generation of tools dealt predominantly with singular objectives such as codon usage optimization and unique restriction site incorporation. Recent years have seen the emergence of sequence design tools that aim to evolve sequences toward combinations of objectives. The design of optimal protein-coding sequences adhering to multiple objectives is computationally hard, and most tools rely on heuristics to sample the vast sequence design space. In this review, we study some of the algorithmic issues behind gene optimization and the approaches that different tools have adopted to redesign genes and optimize desired coding features. We utilize test cases to demonstrate the efficiency of each approach, as well as identify their strengths and limitations.
منابع مشابه
In silico analysis for determining the deleterious nonsynonymous single nucleotide polymorphisms of BRCA genes
Recent advances in DNA sequencing techniques have led to an increase in the identification of single nucleotide polymorphisms (SNPs) in BRCA1 and BRCA2 genes, but no further information regarding the deleterious probability of many of them is available (Variants of Unknown Significance/VUS). As a result, in the current study, different sequence- and structure-based computation...
متن کاملOptimized Joint Trajectory Model with Customized Genetic Algorithm for Biped Robot Walk
Biped robot locomotion is one of the active research areas in robotics. In this area, real-time stable walking with proper speed is one of the main challenges that needs to be overcome. Central Pattern Generators (CPG) as one of the biological gait generation models, can produce complex nonlinear oscillation as a pattern for walking. In this paper, we propose a model for a biped robot joint tra...
متن کاملGeneDesign: rapid, automated design of multikilobase synthetic genes.
Modern molecular biology has brought many new tools to the geneticist as well as an exponentially expanding database of genomes and new genes for study. Of particular use in the analysis of these genes is the synthetic gene, a nucleotide sequence designed to the specifications of the investigator. Typically, synthetic genes encode the same product as the gene of interest, but the synthetic nucl...
متن کاملA Bioinformatics Approach to Prioritize Single Nucleotide Polymorphisms in TLRs Signaling Pathway Genes
It has been suggested that single nucleotide polymorphisms (SNPs) in genes involved in Toll-like receptors (TLRs) pathway may exhibit broad effects on function of this network and might contribute to a range of human diseases. However, the extent to which these variations affect TLR signaling is not well understood. In this study, we adopted a bioinformatics approach to predict the consequences...
متن کاملA Survey of Techniques Used in Algebraic and Number Theoretic Algorithms
We survey some of the important tools and techniques used in designing algorithms for problems in algebra and number theory. We focus on the computational efficiency of these tools and show how they are applied to design algorithms for several basic algebraic and number theoretic operations.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2 شماره
صفحات -
تاریخ انتشار 2014